28 research outputs found

    c-di-AMP: An essential molecule in the signaling pathways that regulate the viability and virulence of gram-positive bacteria

    Get PDF
    Signal transduction pathways enable organisms to monitor their external environment and adjust gene regulation to appropriately modify their cellular processes. Second messenger nucleotides including cyclic adenosine monophosphate (c-AMP), cyclic guanosine monophosphate (c-GMP), cyclic di-guanosine monophosphate (c-di-GMP), and cyclic di-adenosine monophosphate (c-di-AMP) play key roles in many signal transduction pathways used by prokaryotes and/or eukaryotes. Among the various second messenger nucleotides molecules, c-di-AMP was discovered recently and has since been shown to be involved in cell growth, survival, and regulation of virulence, primarily within Gram-positive bacteria. The cellular level of c-di-AMP is maintained by a family of c-di-AMP synthesizing enzymes, diadenylate cyclases (DACs), and degradation enzymes, phosphodiesterases (PDEs). Genetic manipulation of DACs and PDEs have demonstrated that alteration of c-di-AMP levels impacts both growth and virulence of microorganisms. Unlike other second messenger molecules, c-di-AMP is essential for growth in several bacterial species as many basic cellular functions are regulated by c-di-AMP including cell wall maintenance, potassium ion homeostasis, DNA damage repair, etc. c-di-AMP follows a typical second messenger signaling pathway, beginning with binding to receptor molecules to subsequent regulation of downstream cellular processes. While c-di-AMP binds to specific proteins that regulate pathways in bacterial cells, c-di-AMP also binds to regulatory RNA molecules that control potassium ion channel expression in Bacillus subtilis. c-di-AMP signaling also occurs in eukaryotes, as bacterially produced c-di-AMP stimulates host immune responses during infection through binding of innate immune surveillance proteins. Due to its existence in diverse microorganisms, its involvement in crucial cellular activities, and its stimulating activity in host immune responses, c-di-AMP signaling pathway has become an attractive antimicrobial drug target and therefore has been the focus of intensive study in several important pathogens

    Complete genome sequences of emm6 Streptococcus pyogenes JRS4 and parental strain D471

    Get PDF
    We report the complete genome assemblies of the group A Streptococcus pyogenes serotype emm6 strain D471 and its streptomycin-resistant derivative JRS4. Both of these well-studied laboratory strains have been extensively characterized over the past three decades and have been instrumental in the discovery of multiple aspects of streptococcal pathogenesis

    Complete genome sequence of emm type 14 Streptococcus pyogenes strain HSC5

    Get PDF
    Streptococcus pyogenes causes a greater diversity of human disease than any other bacterial pathogen. Here, we present the complete genome sequence of the emm type 14 S. pyogenes strain HSC5. This strain is a robust producer of the cysteine protease SpeB and is capable of producing infection in several different animal models

    SpxA1 and SpxA2 act coordinately to fine-tune stress responses and virulence in Streptococcus pyogenes

    Get PDF
    SpxA is a unique transcriptional regulator highly conserved among members of the phylum Firmicutes that binds RNA polymerase and can act as an antiactivator. Why some Firmicutes members have two highly similar SpxA paralogs is not understood. Here, we show that the SpxA paralogs of the pathogen Streptococcus pyogenes, SpxA1 and SpxA2, act coordinately to regulate virulence by fine-tuning toxin expression and stress resistance. Construction and analysis of mutants revealed that SpxA1− mutants were defective for growth under aerobic conditions, while SpxA2− mutants had severely attenuated responses to multiple stresses, including thermal and oxidative stresses. SpxA1− mutants had enhanced resistance to the cationic antimicrobial molecule polymyxin B, while SpxA2− mutants were more sensitive. In a murine model of soft tissue infection, a SpxA1− mutant was highly attenuated. In contrast, the highly stress-sensitive SpxA2− mutant was hypervirulent, exhibiting more extensive tissue damage and a greater bacterial burden than the wild-type strain. SpxA1− attenuation was associated with reduced expression of several toxins, including the SpeB cysteine protease. In contrast, SpxA2− hypervirulence correlated with toxin overexpression and could be suppressed to wild-type levels by deletion of speB. These data show that SpxA1 and SpxA2 have opposing roles in virulence and stress resistance, suggesting that they act coordinately to fine-tune toxin expression in response to stress. SpxA2− hypervirulence also shows that stress resistance is not always essential for S. pyogenes pathogenesis in soft tissue

    An association between peptidoglycan synthesis and organization of the Streptococcus pyogenes ExPortal

    Get PDF
    The ExPortal of Streptococcus pyogenes is a focal microdomain of the cytoplasmic membrane that clusters the translocons of the general secretory pathway with accessory factors to facilitate the maturation of secreted polypeptides. While it is known that the ExPortal is enriched in anionic lipids, the mechanisms that organize the ExPortal are poorly understood. In the present study, we examined the role of the cell wall in organizing and maintaining the ExPortal. Removal of the cell wall resulted in a loss of ExPortal focal integrity accompanied by the circumferential redistribution of ExPortal lipid and protein components. A similar loss occurred upon treatment with gallidermin, a nonpermeabilizing lantibiotic that targets the lipid II precursor of peptidoglycan synthesis, and this treatment disrupted the secretion of several ExPortal substrates. Furthermore, several enzymes involved in the membrane-associated steps of lipid II synthesis, including MraY and MurN, were found to localize to a single discrete focus in the membrane that was coincident with the focal location of the secretory translocons and the anionic lipid microdomain. These data suggest that the ExPortal is associated with the site of peptidoglycan precursor synthesis and that peptidoglycan biogenesis influences ExPortal organization. These data add to an emerging literature indicating that cell wall biogenesis, cell division, and protein secretion are spatially coorganized processes

    Streptococcus pyogenes polymyxin B-resistant mutants display enhanced exportal integrity

    Get PDF
    The ExPortal protein secretion organelle in Streptococcus pyogenes is an anionic phospholipid-containing membrane microdomain enriched in Sec translocons and postsecretion protein biogenesis factors. Polymyxin B binds to and disrupts ExPortal integrity, resulting in defective secretion of several toxins. To gain insight into factors that influence ExPortal organization, a genetic screen was conducted to select for spontaneous polymyxin B-resistant mutants displaying enhanced ExPortal integrity. Whole-genome resequencing of 25 resistant mutants revealed from one to four mutations per mutant genome clustered primarily within a core set of 10 gene groups. Construction of mutants with individual deletions or insertions demonstrated that 7 core genes confer resistance and enhanced ExPortal integrity through loss of function, while 3 were likely due to gain of function and/or combinatorial effects. Core resistance genes include a transcriptional regulator of lipid biosynthesis, several genes involved in nutrient acquisition, and a variety of genes involved in stress responses. Two members of the latter class also function as novel regulators of the secreted SpeB cysteine protease. Analysis of the most frequently isolated mutation, a single nucleotide deletion in a track of 9 consecutive adenine residues in pstS, encoding a component of a high-affinity P(i) transporter, suggests that this sequence functions as a molecular switch to facilitate stress adaptation. Together, these data suggest the existence of a membrane stress response that promotes enhanced ExPortal integrity and resistance to cationic antimicrobial peptides

    The metal ion-dependent adhesion site motif of the Enterococcus faecalis EbpA pilin mediates pilus function in catheter-associated urinary tract infection

    Get PDF
    Though the bacterial opportunist Enterococcus faecalis causes a myriad of hospital-acquired infections (HAIs), including catheter-associated urinary tract infections (CAUTIs), little is known about the virulence mechanisms that it employs. However, the endocarditis- and biofilm-associated pilus (Ebp), a member of the sortase-assembled pilus family, was shown to play a role in a mouse model of E. faecalis ascending UTI. The Ebp pilus comprises the major EbpC shaft subunit and the EbpA and EbpB minor subunits. We investigated the biogenesis and function of Ebp pili in an experimental model of CAUTI using a panel of chromosomal pilin deletion mutants. A nonpiliated pilus knockout mutant (EbpABC(−) strain) was severely attenuated compared to its isogenic parent OG1RF in experimental CAUTI. In contrast, a nonpiliated ebpC deletion mutant (EbpC(−) strain) behaved similarly to OG1RF in vivo because it expressed EbpA and EbpB. Deletion of the minor pilin gene ebpA or ebpB perturbed pilus biogenesis and led to defects in experimental CAUTI. We discovered that the function of Ebp pili in vivo depended on a predicted metal ion-dependent adhesion site (MIDAS) motif in EbpA’s von Willebrand factor A domain, a common protein domain among the tip subunits of sortase-assembled pili. Thus, this study identified the Ebp pilus as a virulence factor in E. faecalis CAUTI and also defined the molecular basis of this function, critical knowledge for the rational development of targeted therapeutics

    Identification of Novel Listeria monocytogenes Secreted Virulence Factors following Mutational Activation of the Central Virulence Regulator, PrfA▿ †

    No full text
    Upon bacterial entry into the cytosol of infected mammalian host cells, the central virulence regulator PrfA of Listeria monocytogenes becomes activated and induces the expression of numerous factors which contribute to bacterial pathogenesis. The mechanism or signal by which PrfA becomes activated during the course of infection has not yet been determined; however, several amino acid substitutions within PrfA (known as PrfA* mutations) that appear to lock the protein into a constitutively activated state have been identified. In this study, the PrfA activation statuses of several L. monocytogenes mutant strains were subjected to direct isogenic comparison and the mutant with the highest activity, the prfA(L140F) mutant, was identified. The prfA(L140F) strain was subsequently used as a tool to identify gene products secreted as a result of PrfA activation. By use of two-dimensional gel electrophoresis followed by liquid chromatography-electrospray ionization-tandem mass spectroscopy analyses, 15 proteins were identified as up-regulated in the prfA(L140F) secretome, while the secretion of two proteins was found to be reduced. Although some of the proteins identified were known to be subject to direct regulation by PrfA, the majority have not previously been associated with PrfA regulation and their expression or secretion may be influenced indirectly by a PrfA-dependent regulatory pathway. Plasmid insertion inactivation of the genes encoding four novel secreted products indicated that three of the four have significant roles in L. monocytogenes virulence. The use of mutationally activated prfA alleles therefore provides a useful approach towards identifying gene products that contribute to L. monocytogenes pathogenesis

    Introduction to IS Education and Training Minitrack

    No full text
    This minitrack presents seven papers covering a broad spectrum of perspectives about IS (Information Systems) education and training. The goal of the papers is to present different methods and strategies with which to teach IS topics in different environments using a variety of teaching tools and modalities to students with increasingly diverse backgrounds
    corecore